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ABSTRACT

We prove the ergodic theorem for surface integrals of divergence-free sta-

tionary random fields of R3. Mean convergence in Lp spaces takes place

as soon as the field is Lp-integrable. The condition of integrability for

the pointwise convergence is expressed by a Lorentz norm. This theorem

is an ergodic theorem for cocycles of degree 2, analogous to the ergodic

theorem for cocycles of degree 1 proved in [1].

1. Introduction

We prove here the convergence of 2-dimensional averages of a 3-dimensional, sta-

tionary, divergence-free, random field. The averages are taken on triangles with

the origin as one of the vertices, with angles bounded from below by a constant

> 0. The convergence takes place in norm Lp or almost surely, according to the

integrability of the random field, when the area of the triangles tends to 0 or

to infinity. The family of integrals of such a field, on triangular surfaces, forms

a degree 2 cocycle for the action of translations. Thus this theorem constitutes

an ergodic theorem for degree 2 cocycles, analogous to the ergodic theorem for

degree 1 cocycles of actions of Rd , proved in [1]. Similarly to this last reference,

the required condition of integrability for the pointwise convergence is finiteness

of a Lorentz norm.

We pass to a more detailed description: Let T be an action of the group R3

on a probability space (Ω,B, µ) such that (ω, x) 7→ Txω is measurable, and that

Tx preserves the probability µ for all x. Let ~f(ω) = (f1(ω), f2(ω), f3(ω)) be
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an integrable random vector on Ω, with values in R3 . (Following [11], we will

denote the functions with their variables each time this is possible.)

Formally, the integral F(~f)(x, y)(ω) of the random field (~f(Tmω))m∈R3 on the

triangular surface ∆(0, x, y) with vertices 0, x, x+ y is written as

F(~f)(x, y)(ω) =

∫∫

0<s<t<1

∑

(i,j,k)

(xiyj − xjyi)fk(Tsx+tyω)dsdt,

the sum being on cyclic permutations of (1, 2, 3) (with x = (x1, x2, x3), and y =

(y1, y2, y3)). This integral is perhaps not well defined for individual ω. Indeed

the Fubini theorem says that the function m 7→ ~f(Tmω) is locally in L1 (R3 ),

but it does not imply that this function is integrable on surfaces. However,

the function f̄i(m) with values in L1 (Ω), defined by f̄i(m)(ω) = fi(Tmω), is

continuous for the norm of L1 (Ω). Thus the above integral expression makes

sense for each x, y, as a two-dimensional Riemann integral, with values in L1 (Ω).

The alea ω being fixed, the field (~f(Tmω))m∈R3 is divergence-free if for

each m

(1) (∂1f1 + ∂2f2 + ∂3f3)(Tmω) = 0.

where ∂i is the infinitesimal generator of the one parameter group t 7→ Ttei
, and

(ei)1≤i≤3 is the canonical basis of R3 . The divergence operator can be extended

to fields which do not belong to the domain of the generators ∂i. Thus this

definition has to be taken in the following weak sense.

Definition 1: An integrable random vector ~f(ω) admits as divergence an inte-

grable random variable g(ω) if, ω-almost surely, for any C∞ function φ(m) with

compact support in R3 we have

∫∫∫ 3
∑

i=1

∂φ

∂mi
(m) · fi(Tmω)dλ(m) = −

∫∫∫

φ(m) · g(Tmω)dλ(m),

where λ is the Lebesgue measure on R3 . We denote this property by divT (~f) =

g. When divT(~f) = 0, we say that the random vector ~f(ω) is divergence-free in

the weak sense, or is a weak functional cocycle of degree 2.

Equation (1) and its weak form given in Definition 1 have meaning in several

domains.

• The concept of divergence-free random vector in a weak sense has applica-

tions in the study of random media. It appears for instance in [6, p. 227],

under the name of solenoidal field. Let us note that an integrable random
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vector ~f(ω) is divergence-free in the weak sense if and only if the random

field (~f(Tmω))m∈R3 is ω almost surely divergence-free on R3 , in the sense

of distributions.

• The analogue of Equation (1) for the discrete case (action of Z3) is studied

in particular in [7] as a notion of functional cocycle of degree 2. That is

the reason why a random vector, divergence-free in the weak sense, is also

called a weak functional cocycle of degree 2.

• Finally, this notion makes sense from an algebraic point of view. Indeed, as

in classical differential calculus, the integral of a weak functional cocycle of

degree 2 on a closed surface is null. Expressed for the surface constituted

by the four oriented faces of the tetrahedron with vertices 0, x, x + y,

x+ y + z, the free divergence property gives, ω-a.s.,

(2)

F(~f)(x, y)(ω)+F(~f )(x+y, z)(ω)−F(~f )(x, y+z)(ω)−F(~f )(y, z)(Txω) = 0.

This equation has a meaning from the point of view of group theory. It

means that F(~f)(x, y)(ω) is an algebraic cocycle of degree 2 with values

in L1 (Ω), for the action U of the group R3 on L1 (Ω), induced from T by

(Uxψ)(ω) = ψ(Txω) (see for example [9] or [4]). The concept of cocycle

of degree 2 in ergodic theory is slightly different, because it is based on

the orbits of T in Ω (see [8] for the degree 1, or Definition 3 below for

the degree 2). It is the reason why a function F(~f)(x, y)(ω) which verifies

equation (2) will be called an algebraic pseudo-cocycle of degree 2.

The Lorentz norm of a random vector ~f(ω) is defined for 1 ≤ p < +∞ and

1 ≤ q ≤ +∞ by

(3) ‖~f(ω)‖p,q =

{

(q
∫ ∞

0 (µ(‖~f(ω)‖ > t)1/p · t)q dt
t )1/q if 1 ≤ q < +∞;

supt>0(µ(‖~f(ω)‖ > t)1/p · t) if q = +∞.

This defines the Lorentz space Lp,q (Ω). It is also possible to define Lorentz

spaces in the case p = +∞ and 1 ≤ q < +∞, but it will not be used in our

study. Lorentz spaces are interpolation spaces between Lebesgue spaces. We

have for instance the identity Lp,p (Ω) = Lp (Ω), and the inclusions
⋃

p′>p

Lp′

(Ω) ⊂ Lp,1 (Ω) ⊂ Lp (Ω) ⊂ Lp,∞ (Ω) ⊂
⋂

p′<p

Lp′

(Ω)

for all p ≥ 1 (see [5]). Let us note moreover that the Markov inequality and the

standard weak maximal inequality can be expressed using the Lorentz norms,

respectively by

(4) ‖h(ω)‖1,∞ ≤ ‖h(ω)‖1,1
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and

(5)

∥

∥

∥

∥

sup
R

1

R3

∫∫∫

‖m‖<R

h(Tmω)dλ(m)

∥

∥

∥

∥

1,∞

< C‖h(ω)‖1,1,

where λ is the Lebesgue measure on R3 .

Let us pass to the ergodic theorem. For a constant field ~f(ω) ≡
∫

Ω
~fdµ, we

have

F(~f)(x, y)(ω) =
1

2

∑

(i,j,k)

(xiyj − xjyi)

∫

Ω

fkdµ,

the sum being taken on the (i, j, k) obtained by cyclic permutations of (1, 2, 3),

with x = (x1, x2, x3, ) and y = (y1, y2, y3). This can be written as

F(~f)(x, y)(ω) =
1

2
x ∧ y ·

∫

Ω

~fdµ,

where x∧y is the vector whose k-th coordinate (x∧y)k is equal to (xiyj −xjyi).

Lastly, the area of the triangle ∆(0, x, y) is equal to

1

2

√

∑

(i,j,k)

(xiyj − xjyi)2 =
1

2
‖x ∧ y‖.

In the sequel, we will denote by ~f(ω) the random vector defined on Ω, but also

the random field (~f(Tmω))m∈R3. Here is the ergodic theorem:

Theorem 1: Let 1 ≤ p < +∞ and 1 ≤ q ≤ +∞. Let us suppose that the

action T is ergodic with respect to µ. Let ~f(ω) be a vector field in Lp,q (Ω),

divergence-free in the weak sense.

1. We have the following mean convergence in Lp,q (Ω):

lim
x,y→∞

1
1
2‖x ∧ y‖

(

F(~f)(x, y)(ω) − 1

2
x ∧ y ·

∫

Ω

~fdµ

)

= 0,

when x and y tend to infinity, under the condition that the angles of the

triangle ∆(0, x, y) are bounded from below by a constant θ0 > 0.

2. If moreover ~f(ω) belongs to L2,1 (Ω), then the integral F(~f)(x, y)(ω) ad-

mits a pointwise version F̃(~f)(ω, x, y), continuous in x, y for almost all ω,

and for which the above convergence is true almost surely.

3. These convergences are true for x and y tending to 0, always under the

condition that the angles of the triangle ∆(0, x, y) are bounded from below
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by a constant θ0 > 0, if we put ~f(ω) instead of the expectation value
∫

Ω
~fdµ.

Similarly to the classical Wiener ergodic theorem, this theorem can be ex-

tended to the non-ergodic case, replacing expectation by the conditional ex-

pectation given the σ-algebra of the invariant sets. This theorem has a second

version, obtained by dividing the integral by the square of the radius of the

smallest ball of center 0 containing the triangle, instead of the area thereof.

For this convergence it is possible to relax the condition on the angles of the

triangle. Moreover, it is easier to interpret from the point of view of homoge-

nization theory. We write it for pointwise convergence:

Theorem 2: Let ~f(ω) be a vector field in L2,1 (Ω), divergence-free in the weak

sense. The integral F(~f)(x, y)(ω) has a pointwise version F̃(~f)(ω, x, y), conti-

nuous in x, y for almost all ω, for which, for almost all ω, we have

lim
R→+∞

1

R2
F̃(~f)(ω,Rx,Ry) =

1

2
x ∧ y ·

∫

Ω

~fdµ;

lim
R→0

1

R2
F̃(~f)(ω,Rx,Ry) =

1

2
x ∧ y · ~f(ω),

uniformly on the set {(x, y); ‖x‖ ≤ 1 and ‖x+ y‖ ≤ 1}.
If we suppose moreover that max{‖x‖, ‖x + y‖} = 1 and that the angles of

the triangles ∆(0, x, y) are bounded from below by a constant θ0 > 0, then R2

has the same order as ‖Rx ∧ Ry‖, and we find the pointwise convergence of

Theorem 1.

The integrability L2,1 (Ω) is optimal, in the following sense: given a probability

ν on R+ such that the identity s 7→ s is not in L2,1 (R+ , ν), we can build a

space (Ω,B, µ), with an action T of R3 , and a vector field ~f(ω), divergence-

free in the weak sense, such that the Euclidean norm ‖~f(ω)‖ has the given

distribution ν, and such that for any ω, the averages of Theorem 1 are not

bounded, for x, y close to zero, or tending to infinity. A detailed construction

of this counterexample is too long to appear here. This optimality property is

not surprising when we know that Lorentz spaces Ld,1 are optimal spaces for

theorems on differentiation in Sobolev spaces (see [10]).

This article completes the preceding note [2], in which proofs were presented

without details. In that note we presented the discrete case (action of Z3),

where the question of the definitions in the weak sense, and the problem of the

existence of a continuous version F̃(~f)(ω, x, y), do not appear. And, for the

pointwise convergence, we use an integrability assumption stronger than here,

without reference to Lorentz spaces.
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2. Cocycles and coboundaries of degree 2

The object of this paragraph is to study the concepts of weak functional co-

cycles and coboundaries of degree 2. We specify the connection between these

concepts and those of algebraic cocycles and coboundaries of degree 2, and we

prove that weak functional coboundaries of degree 2 in Lp,q (Ω) are dense in the

space of weak functional cocycles of degree 2 in Lp,q (Ω). We start by exposing

a phenomenon which exhibits the difference between the ergodic theorem for

cocycle of degree 1 proved in [1] and our theorem for the degree 2.

An algebraic pseudo-cocycle of degree 1 is a measurable function of two vari-

ables, denoted F (x)(ω) (preferable than F (x, ω), for reasons which will appear

later), such that for any x, the function F (x)(ω) of ω belongs to L1 (Ω), and

such that for any x, y ∈ R3 , ω-almost surely, we have

F (x + y)(ω) = F (x)(ω) + F (y)(Txω).

The ergodic theorem for cocycle of degree 1 of [1] has a converse statement, with

the following weak version: if a pseudo-cocycle F (x)(ω) of degree 1 satisfies the

local mean ergodic theorem in L1 (Ω), and if we denote by ~f(ω) = (fi(ω))1≤i≤3

the limit field, defined by

lim
‖x‖→0

1

‖x‖(F (x)(ω) −
3

∑

i=1

xifi(ω)) = 0 ,

then the cocycle can be written as a line integral with value in L1 (Ω):

F (x)(ω) =

∫ 1

0

3
∑

i=1

xif̄i(sx)(ω)ds,

where f̄i(x) denotes the function with values in L1 (Ω) defined by f̄i(x)(ω) =

fi(Txω).

Because of purely algebraic phenomena, this is not true any more in degree

2. A pseudo-cocycle F (x, y)(ω) of degree 2 verifying the local ergodic theorem,

with limit field ~f(ω), is not necessarily of the form F(~f)(x, y)(ω). Here is an

example:

F (x, y)(ω) = ‖x‖3 + ‖y‖3 − ‖x+ y‖3.
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Equation (2) is satisfied by F (x, y)(ω), the function of ω is integrable for all

x, y, and 1
‖x∧y‖F (x, y)(ω) converges to 0, for x and y tending to 0 under the

condition of Theorem 1, that is to say when the angles of the triangle ∆(0, x, y)

are bounded from below. Hence, if there were a divergence-free field ~f(ω) such

that F (x, y)(ω) = F(~f)(x, y)(ω), it would be zero. That is obviously contra-

dictory, since F (x, y)(ω) 6= 0. The characterization, in the set of the algebraic

pseudo-cocycles of degree 2, of cocycles of the form F(~f)(x, y)(ω), is still work

in progress.

In this paper we consider only algebraic cocycles of degree 2 deduced from

functional cocycles of degree 2 by integration on triangles.

A functional coboundary of degree 2 for an action T of R3 is a vector field
~f(ω) for which there exists a vector field ~g(ω) such that fi = ∂jgk −∂kgj , where

(i, j, k) is a cyclic permutation of (1, 2, 3). It is again necessary to extend the

concept of functional coboundary in a weak sense:

Definition 2: An integrable field ~f(ω) is a weak functional coboundary of degree

2 if there exists an integrable field ~g(ω) such that ω-almost surely, we have for

any C∞ function ~φ(m) with compact support,

∫∫∫

∑

(i,j,k)

gi(Tmω)(
∂φk

∂mj
− ∂φj

∂mk
)(m)dλ(m) =

∫∫∫ 3
∑

i=1

φi(m)fi(Tmω)dλ(m),

the first sum being taken on cyclic permutations of (1, 2, 3). We will denote
~f(ω) = curlT ~g(ω).

We define the concepts of algebraic cocycle and algebraic pseudo-cocycle of

degree 2:

Definition 3: An algebraic cocycle of degree 2 is a measurable function of three

variables F̃ (ω, x, y) such that, for almost all ω, for all x, y,

(6) F̃ (ω, x, y) + F̃ (ω, x+ y, z) − F̃ (ω, x, y + z) − F̃ (Txω, y, z) = 0.

An integrable algebraic pseudo-cocycle of degree 2 is a measurable function of

three variables, denoted F (x, y)(ω), such that the function F (x, y)(ω) of the

variable ω belongs to L1 (Ω) for any x, y, and the following equality holds inL1 (Ω):

(7) F (x, y)(ω) + F (x+ y, z)(ω) − F (x, y + z)(ω) − F (y, z)(Txω) = 0.
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The concept of algebraic cocycle was studied in [8], and the one of integrable

algebraic pseudo-cocycle in [4].

By the Fubini theorem, any algebraic cocycle, integrable in ω for all x, y,

is an integrable pseudo-cocycle. Using the fact that Q is countable and dense

in R, we can easily check that a measurable function F̃ (ω, x, y) which is ω-

a.s. continuous in x, y, and such that F (x, y)(ω) = F̃ (ω, x, y) is an integrable

algebraic pseudo-cocycle, is in fact an algebraic cocycle.

For any field ~f(ω) ∈ L1 (Ω), we denote by f̄(x) the function defined on R3 ,

with values in the space of random vector fields in L1 (Ω), defined by f̄(x)(ω) =
~f(Txω). We have

Lemma 1: Let ~f(ω) be an integrable field and let F(~f)(x, y)(ω) be its integral

on the triangles ∆(0, x, y):

(8) F(~f)(x, y)(ω) =

∫∫

∆(0,x,y)

f̄(m)(ω)d~σ(m).

Let us suppose that ~f(ω) is divergence-free. Then the above integral defines an

integrable algebraic pseudo-cocycle of degree 2. Moreover, if the field ~f(ω) is

a weak functional coboundary ~f = curlT ~g, then the algebraic pseudo-cocycle

F(~f)(x, y)(ω) is an integrable algebraic pseudo-coboundary: for all x, y, almost

surely in ω,

(9) F(~f)(x, y)(ω) = H(~g)(x)(ω) + H(~g)(y)(Txω) −H(~g)(x+ y)(ω),

where H(~g)(z)(ω) is the line integral of ḡ(u)(ω) along the segment [0, z]:

H(~g)(z)(ω) =
3

∑

i=1

∫ 1

0

ziḡi(sz)(ω)ds,

for z = (z1, z2, z3).

Proof: This is a consequence of the Stokes formula. Indeed, if the field ~f(ω) is

divergence-free, Equality (2) follows from

(10)

∫∫

∂K

f̄(m) d~σ(m) =

∫∫∫

K

divT
~f(m)dλ(m),

where K is the tetrahedron of vertices 0, x, x + y, x + y + z (the variable ω

is omitted; the functions are L1 (Ω)-valued). Similarly, if the field ~f(ω) is a
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functional coboundary curlT ~g(ω), Equality (9) follows from

(11)

∫∫

∆

curlT ~g(m)d~σ(m) =

∫

∂∆

ḡ(m)d~ℓ(m),

where ∆ is the triangular surface of vertices 0, x, x+ y.

In order to check the above two formulas (10) and (11), the standard Stokes

formula has to be adapted to the weak definitions by an argument of convolution.

We consider the “T -convolution” of a C∞ function φ(m) having compact support

in R3 with an integrable function g(ω) ∈ L1 (Ω). For ω ∈ Ω, let us denote by

gω(m) the function defined on R3 by gω(m) = g(Tmω). According to the Fubini

theorem, the set Ω1(g) ⊂ Ω of ω’s such that the function gω(m) is locally

integrable in R3 has full probability. Thus the following integral is defined for

ω ∈ Ω1(g):

(φ ⋆ gω)(x) =

∫∫∫R3

φ(−m)gω(x+m)dλ(m).

Moreover, since the function φ(x) is C∞, the function φ ⋆ gω(x) is C∞ with

respect to x ∈ R3 for all ω ∈ Ω1(g). Hence its value on the origin is well defined

and we can define the T -convolution (φ ⋆T g)(ω) by

(φ ⋆T g)(ω) = (φ ⋆ gω)(0).

This notion of T -convolution can be generalized with random fields by taking

the convolution for each coordinate: (φ ⋆T
~f)i(ω) = (φ ⋆T fi)(ω), where ~f(ω) =

(fi(ω))i=1,...,3. We have

Lemma 2: Let ~g(ω) and ~f(ω) be two integrable fields, admitting respectively

a curl and a divergence, in the weak sense. Then we have ω-almost surely, for

any C∞ function φ(m) with compact support

curl(φ ⋆ ~gω)(x) = (φ ⋆T curlT ~g)(Txω);

div(φ ⋆ ~fω)(x) = (φ ⋆T divT
~f)(Txω),(12)

where curl and div without the index T are the classical operators of differential

calculus.

Proof: We begin with the second equality. For any x ∈ R3 , Definition 1 can

be rewritten as

−
∫∫∫ 3

∑

i=1

∂φ

∂mi
(x−m)fi(Tmω)dλ(m) =

∫∫∫

φ(x−m) divT
~f(Tmω)dλ(m).
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By derivation under the integral on the left-hand side, and on the right-hand

side change of variables m 7→ m′ defined by m′ = m− x, it becomes

3
∑

i=1

∂

∂xi

∫∫∫

φ(x −m)fi(Tmω)dλ(m) =

∫∫∫

φ(−m′) divT
~f(Tm′(Txω))dλ(m′).

This proves the second equality of Lemma 2. The first one follows similarly

from Definition 2.

Lemma 3: Let ψ(m) be a C∞ positive function with compact support, and

integral equal to 1. For any integer n ≥ 0, let ψn(m) = n3ψ(nm). Let ~f(ω) ∈L1 (Ω). We have the following mean convergence in L1 (Ω):

∫∫

∆

f̄(m)d~σ(m) = lim
n→+∞

∫∫

∆

(ψn ⋆T f)(Tmω)d~σ(m).

Remark: For ω ∈ Ω1(~f) the function m 7→ (ψn ⋆T
~f)(Tmω) is C∞ with respect

to m, hence its integrals over triangular surfaces are well defined.

Proof: Since the function f̄(m) is continuous, we have the following mean

convergence in L1 (Ω):

~f(ω) = lim
n→+∞

(ψn ⋆T
~f)(ω).

Hence Lemma 3 will be proved if we show that the operator ~f 7→
∫∫

∆ f̄d~σ

is continuous in L1 (Ω). Since the generalization of the standard triangular

inequality with integrals leads to

∥

∥

∥

∥

∫∫

∆

f̄(m)d~σ(m)

∥

∥

∥

∥L1(Ω)

≤
∫∫

∆

‖f̄(m)‖L1(Ω)‖d~σ‖(m),

where ‖d~σ‖ is the infinitesimal area on ∆, and since T is stationary, we obtain

∥

∥

∥

∥

∫∫

∆

f̄(m)d~σ(m)

∥

∥

∥

∥L1(Ω)

≤ |∆|‖~f‖L1(Ω),

with |∆| equal to the area of the triangular surface ∆. This achieves the proof

of Lemma 3.

Now Lemma 2 is a consequence of the classical Stokes formulae. Let ~f(ω) be

a vector field admitting a divergence divT
~f(ω) in the weak sense. Applying the
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classical Stokes formula to the left-hand side of Equality (12) with φ = ψn, we

obtain
∫∫

∂K

(ψn ⋆ ~fω)(m)d~σ(m) =

∫∫∫

K

(ψn ⋆T divT (~f))(Tmω)dλ(m).

for any tetrahedron K, with boundary ∂K. When n tends to infinity, and

according to Lemma 3, we obtain Equality (10). A calculation very similar to

the above one proves Equality (11). This completes the proof of Lemma 1.

We will now prove a converse statement. It will not be used in the sequel,

but it is interesting from the point of view of the connection between algebraic

and functional cocycles of degree 2.

Lemma 4: Let ~f(ω) be an integrable field, and let F(~f)(x, y)(ω) be the family

of its integrals over triangles. If F(~f)(x, y)(ω) is an algebraic pseudo-cocycle of

degree 2, then ~f(ω) is divergence-free in the weak sense.

Remark: It is a direct consequence of Equality (10) if the field ~f(ω) is supposed

to admit a divergence in the weak sense.

Proof: Let ~f(ω) be an integrable field such that F(~f)(x, y)(ω) is an algebraic

pseudo-cocycle of degree 2, that is to say such that the equality

(13)

∫∫

∂K

f̄(m)d~σ(m) = 0

holds in L1 (Ω) for any tetrahedron K. Let φ(y) be a C∞ function with compact

support, and ψn(m) be the function defined in Lemma 3. The Fubini theorem

and appropriate changes of variables lead to: for ω ∈ Ω1(~f)
∫∫

∂K

(ψn ⋆ (φ ⋆ ~fω))(m)d~σ(m) =

(

φ ⋆T

(
∫∫

∂K

(ψn ⋆T f̄)d~σ

))

(ω).

Thus, according to Lemma 3, the following equality holds in L1 (Ω):
∫∫

∂K

(φ ⋆ ~fω)(m)d~σ(m) =

(

φ ⋆T

(
∫∫

∂K

f̄d~σ

))

(ω).

It follows from hypothesis (13) that the right-hand side is null, hence the Stokes

formula applied to the left-hand side leads to
∫∫∫

K

div(φ ⋆ ~fω)(m)dλ(m) = 0.
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By derivation under the integral defining the convolution this can be rewritten

as ∫∫∫

K

(grad(φ) ⋆T
~f)(Tmω)dλ(m) = 0.

Since it is true for any K, it follows from the classical local ergodic Wiener

theorem that there exists a set Eφ with full measure such that for ω ∈ Eφ

(14) (grad(φ) ⋆T
~f)(ω) = 0.

To prove that divT
~f = 0, we have to find a full measure subset E ⊂ Ω such

that Equation (14) holds for any ω ∈ E and any C∞ function φ with compact

support. Let (Kn)n≥1 be a countable increasing family of compact sets coveringR3 . Let us recall that the space DKn
of C∞ functions with support belonging

in Kn is separable for its standard topology. Let (φk,n(m))k≥1 be a dense

countable family in DKn
, and E ⊂ Ω be a full measure set of ω’s such that

~fω(m) is locally in L1 (R3 ) and Equation (14) holds for any φk,n(m), k, n ≥ 1.

For any C∞ function φ(m) with compact support, let n be an integer such that

Kn contains the support of φ(m). For any ω ∈ E and any integer k we have

∣

∣

∣

∣

∫∫∫ 3
∑

i=1

∂φ

∂mi
(−m)fi(Tmω)dλ(m)

∣

∣

∣

∣

≤

max
1≤i≤3

∥

∥

∥

∂φ

∂mi
− ∂φk,n

∂mi

∥

∥

∥

∞

3
∑

i=1

∫∫∫

Kn

|~fi(Tmω)|dλ(m).

Since k can be chosen so that the above maximum becomes as small as de-

sired, Equation (14) holds in fact for the function φ(m) itself. This proves that

divT
~f = 0 and completes the proof of Lemma 4.

According to the formula divT (curlT ) = 0, any weak functional coboundary

of degree 2, ~f = curlT ~g, with ~f and ~g ∈ Lp,q (Ω), is a weak functional cocycle.

The converse statement is false (see [3] for an example in the discrete case of an

action of Z3). We have however the following proposition.

Proposition 1: Let 1 ≤ p < +∞ and 1 ≤ q ≤ +∞. Let us suppose that the

action T is ergodic. Any zero divergence field in the weak sense, in Lp,q (Ω),

and of null expectation, is the limit in Lp,q (Ω) of weak functional coboundaries,

built from fields ~g(ω) in Lp,q (Ω).

Proof: Let ~f(ω) be a zero divergence field in the weak sense, in Lp,q (Ω), and

of null expectation. A sequence of fields ~gN (ω), the curls of which tend to ~f(ω),
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can be built explicitly. For N ≥ 1, we define the field ~gN (ω) ∈ Lp,q (Ω) by

~gN =
1

N3

∫∫∫

x∈[0,N ]3

~gxdλ(x)

where ~gx(ω) = (gi,x(ω))i=1,...,3 is the random field defined by

(15) gi,x =

∫ 1

0

xj f̄k(sx) − xkf̄j(sx)ds,

and (i, j, k) is a cyclic permutation of (1, 2, 3). The lemma would be proved if

we check that, in the weak sense, we have

(16) curlT ~gN = ~f(ω) − 1

N3

∫∫∫

x∈[0,N ]3

~f(Txω)dλ(x).

Indeed, the standard mean ergodic theorem gives the convergence of the right-

hand side to ~f(ω), when N tends to infinity. This convergence is well known in

Lebesgue spaces Lp (Ω), and can be generalized with Lorentz spaces Lp,q (Ω) by

the density of Lp′

(Ω) in Lp,q (Ω) for a p′ > p. This would prove Proposition 1.

Let us come back to calculation of curlT ~gN . Formally, commuting the inte-

gration on x with curlT , Equality (16) follows from

(17) curlT ~gx(ω) = ~f(ω) − ~f(Txω).

This calculation is easy if the field ~f(ω) belongs to the domain of operators

∂i. Indeed, Formula (15) leads to the following expression of the coordinate

(curlT ~g)k = ∂igj,x − ∂jgi,x:

(curlT ~g)k =

∫ 1

0

xk(∂if̄i(sx) + ∂j f̄j(sx)) − xi∂if̄k(sx) − xj∂j f̄k(sx)ds.

According to the hypothesis divT
~f = 0, we have ∂if̄i + ∂j f̄j = −∂kf̄k. Hence

the above equality becomes

(curlT ~g)k = −
∫ 1

0

3
∑

ℓ=1

xℓ∂ℓf̄k(sx)ds.

Since the sum on ℓ is the derivative of the function s 7→ f̄k(sx), the integral on

s equals f̄k(0) − f̄k(x), which gives Formula (17).
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In order to generalize this calculation to weak definitions, consider the follow-

ing algebraic formula:

∑

(j,k)

(xj f̄k(sx+m) − xkf̄j(sx+m))
(∂φk

∂sj
(m) − ∂φj

∂sk
(m)

)

=

−
3

∑

j=1

xj

3
∑

k=1

f̄k(sx+m)
∂φj

∂sk
(m) +

3
∑

k=1

f̄k(sx+m)

3
∑

j=1

xj
∂φk

∂sj
(m),

where the first summation is over (j, k) = (1, 2), (2, 3), (3, 1). Let us consider

the right-hand side. With an integration on m, the summation on k in the first

double sum disappears, because divT
~f = 0. Then, by a change of variables

m 7→ m′ defined by m′ = m + sx, and integration on s ∈ [0, 1], the second

double sum becomes

∫

m′

3
∑

k=1

f̄k(m′)(φk(m′) − φk(m′ − x))dλ(m′).

This is clearly equal, by stationarity of T , to

∫

m′

3
∑

k=1

(f̄k(m) − f̄k(m+ x))φk(m)dλ(m).

Now, with an integration on s ∈ [0, 1] and an integration on m ∈ R3 , the

left-hand side of the above algebraic formula becomes
∫

m

∑

(i,j,k)

ḡi,x(m)
(∂φk

∂sj
(m) − ∂φj

∂sk
(m)

)

dλ(m).

Finally we have
∫

m

∑

(i,j,k)

ḡi,x(m)
(∂φk

∂sj
(m) − ∂φj

∂sk
(m)

)

dλ(m) =

∫

m′

3
∑

k=1

(f̄k(m) − f̄k(m+ x))φk(m)dλ(m).

According to Definition 2, this proves Formula (17).

To achieve the proof of Equality (16) it suffices to integrate the above formulas

on x ∈ [0, N ]3 and to use the Fubini theorem.

If the action T is not ergodic, the result remains true for functions with

vanishing conditional expectation given the σ-algebra of the invariant sets.
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3. Ergodic theorem

In this paragraph, we prove the ergodic theorem, for mean convergence inLp,q (Ω) and for pointwise convergence. For a vector field ~f(ω) ∈ Lp,q (Ω),

divergence-free in the weak sense, let us denote M(~f)(x, y)(ω) the average in-

tegral of ~f on the triangle with vertices (0, x, x+ y):

M(~f)(x, y)(ω) =
1

1
2‖x ∧ y‖F(~f)(x, y)(ω).

3.1 Mean convergence in Lp,q (Ω). Let us start with mean convergence inLp,q (Ω). It is clear that a constant field ~f(ω) ≡
∫

Ω
~fdµ is divergence-free, and

verifies the mean ergodic theorem. Convergence when the field ~f(ω) is a weak

functional coboundary is stated in the following way:

Lemma 5: For a weak functional coboundary ~f = curlT ~g, with ~g(ω) ∈ Lp,q (Ω),

we have

(18) ‖M(~f)(x, y)(ω)‖p,q ≤ ‖x‖ + ‖y‖ + ‖x+ y‖
1
2‖x ∧ y‖

‖~g‖p,q.

This expression goes to 0 when x and y tend to infinity, under the condition

that the angles of the triangle ∆(0, x, y) are bounded from below by a constant

θ > 0.

Proof: The inequality follows from the generalization of triangular inequality

for the norms Lp,q with integrals, which is written as

∥

∥

∥

∥

∫

m∈∂∆

~g(Tmω)d~ℓ(m)

∥

∥

∥

∥Lp,q(Ω)

≤
∫

m∈∂∆

‖~g(Tmω)‖Lp,q(Ω)‖d~ℓ‖(m),

where d~ℓ and ‖d~ℓ‖ are respectively the infinitesimal tangential field and the

infinitesimal length of ∂∆(0, x, y). Since the action T preserves the measure µ,

the last expression is bounded by |∂∆| · ‖~g‖p,q.

For convergence to 0 of the right-hand side in inequality (18), we note that

the fraction is equal to the ratio between the perimeter of the triangle and its

area, so the condition that the angles of the triangle ∆(0, x, y) are bounded from

below by a constant θ > 0 implies that this fraction is O(‖x‖−1).

We also have uniform continuity in x, y of the operator M for the Lp,q (Ω)

norm:
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Lemma 6: Let ~f(ω) be a vector field, divergence-free in the weak sense. We

have

‖M(~f)(x, y)(ω)‖p,q ≤ ‖~f(ω)‖p,q

for all x, y.

It is again a consequence of the triangular inequality and stationarity.

The density of the weak functional coboundaries and the two preceding lem-

mas give the mean ergodic theorem. Convergence for x, y tending to 0 is obvious,

by continuity of the function f̄(x) with values in Lp,q (Ω). This completes the

proof of point 1 of Theorem 1.

3.2 Pointwise convergence. In order that the pointwise ergodic theorem

makes sense, the integral of the zero divergence field (~f(Txω))x∈R3 has to be

ω-almost surely defined on all triangles. It will work if there exists an ω-almost

surely continuous version of the function F(~f)(x, y)(ω) of variables x, y.

3.2.1 Existence of a continuous version. This ω-almost surely continuous ver-

sion exists if ~f(ω) belongs to L2,1 (Ω):

Proposition 2: Let ~f(ω) be a vector field in L2,1 (Ω), weakly divergence-free.

Let F(~f)(x, y)(ω) be the algebraic pseudo-cocycle of degree 2 which is obtained

by integrating ~f(ω) on triangles. Then there is an algebraic cocycle F̃(~f)(ω, x, y)

of degree 2 such that F(~f)(x, y)(ω) = F̃(~f)(ω, x, y) for all x, y, for almost all ω.

Moreover, for almost all ω, the function F̃(~f)(ω, x, y) can be chosen continuous

in the two variables x, y.

Proof: Let ~f(ω) be a zero divergence field in the weak sense in L2,1 (Ω). We

denote K(0, x, y) the tetrahedron with the triangle ∆(0, x, y) as basis, with

the length of the altitude equal to the radius RI of the inscribed circle in the

triangle ∆(0, x, y), and the foot of the altitude is the center c of this circle. This

tetrahedron has vertices 0, x, x+ y, x+ y + z with z defined by

x+ y + z = c+RI~n,

where ~n is the oriented normal vector of the triangle. The 2-dimensional integral

F(~f)(x, y)(ω) can be expressed as a 3-dimensional integral on the tetrahedron

K(0, x, y). Indeed, let us consider for η ∈ [0, π/4] the vertex x+y+z(η) defined

by

x+ y + z(η) = c+RI tan η~n.
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The equation of pseudo-cocycle of degree 2 can be written as the following

equality in L2,1 (Ω) for all x, y, η,

F(~f)(x, y)(ω) = F(~f)(x, y+z(η))(ω)−F(~f )(x+y, z(η))(ω)+F(~f)(y, z(η))(Txω),

and integrating on η, we obtain: for all x, y,

(19)

F(~f)(x, y)(ω) =
4

π

∫ π/4

0

F(~f)(x, y + z(η))(ω)dη

− 4

π

∫ π/4

0

F(~f)(x + y, z(η))(ω)dη

+
4

π

∫ π/4

0

F(~f)(y, z(η))(Txω)dη.

Integrals F(~f) being double integrals with values in L2,1 (Ω), we obtain a triple

integral on the tetrahedron K(0, x, y), with value in L2,1 (Ω). Let us denote

Fi(~f)(x, y)(ω), for i = 1, 2, 3, the three triple integrals corresponding to the

above decomposition. Let us consider for instance the first one:

F1(~f)(x, y)(ω) =
4

π

∫ π/4

0

F(~f)(x, y + z(η))(ω)dη.

Let c′ be the orthogonal projection of c, on the axis generated by x. Let us

consider the orthonormal basis (~u1, ~u2, ~u3) of R3 defined by

~u1 =
x

‖x‖ , ~u2 =
c− c′

‖c− c′‖ and ~u3 = ~n.

We denote by M(s, r, η) the point whose coordinates in this basis are

(s, r cos η, r sin η). The integral F1(~f)(x, y)(ω) can be rewritten as

4

π

∫ π/4

η=0

∫∫

(r,s)∈∆η

f̄(M(s, r, η))(ω) · ((sin η)~u2 − (cos η)~u3)drdsdη,

where the domain ∆η corresponds to the parameterization by (s, r) of the tri-

angle of vertices (0, x, x + y + z(η)). In order to fix ω, consider the operators

Gi, similar to the Fi, but for the functions ~φ(m) of the variable m ∈ R3 . For

instance, for i = 1:

(20) G1(~φ)(x, y) =
4

π

∫ π/4

η=0

∫∫

(r,s)∈∆η

~φ(M(s, r, η)) · ((sin η)~u2− (cos η)~u3)drdsdη.

Let us denote G =
∑3

i=1 Gi. We have



300 J. DEPAUW Isr. J. Math.

Lemma 7: Fix ρ > 0, and denote by B the ball of center 0 and radius ρ. For

any field ~φ(m) ∈ L2,1 (B), for any x, y, such that x and x+ y ∈ B we have

|G(~φ)(x, y)| ≤ 24

√

2ρ

π
‖~φ(m)‖L2,1(B).

Moreover, the function G(~φ)(x, y) is continuous on the set {(x, y), x, x+y ∈ B}.

Proof of Lemma 7: Let us first consider the function G1(φ)(x, y). The volume

element is dλ = rdrdsdη. Hence the integral (20) which defines G1(~φ)(x, y) is

absolutely convergent if

4

π

∫∫∫

‖~φ(M(s, r, η))‖1

r
dλ(s, r, η) <∞.

However, by the analogue of the Hölder inequality for Lorentz norms (see [5]),

this last integral is bounded by

2 · ‖~φ(m)‖L2,1(K1(0,x,y)) ·
∥

∥

∥

1

r

∥

∥

∥L2,∞(K1(0,x,y))

where K1(0, x, y) is the set of points m of R3 corresponding to the triple integral

above. Let us calculate the second factor of the above product: ‖r−1‖L2,∞(K1).

The parameter r is the distance from the point m to the axis ~u1. Hence the set

K1(0, x, y)∩{1/r > t} has a volume lower than the one of a cylinder of axis ~u1,

length ‖x‖ and radius 1/t, so

λ(K1(0, x, y) ∩ {1/r > t}) ≤ π‖x‖(1/t)2.

By the definition of L2,∞ norm, it follows that

‖1/r‖L2,∞(K1(0,x,y)) ≤
√

π‖x‖.

The same argument can be applied to the other two integrals corresponding to

the terms Gi(~φ)(x, y), i = 2, 3, which are bounded respectively by
√

π‖x+ y‖
and

√

π‖y‖. This proves the announced inequality, since x and x + y be-

long to B. To achieve the proof, note that G(~φ)(x, y) is continuous on the set

{(x, y), x and x+ y ∈ B} when ~φ(m) in continuous, and conclude by a density

argument in L2,1 (B) norm.

In order to apply Lemma 7 to the field m 7→ ~f(Tmω), we have to prove the

following lemma:
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Lemma 8: Let ~f(ω) be a vector field in L2,1 (Ω). For a fixed ω, let ~fω(m) be

the field defined on R3 by ~fω(m) = ~f(Tmω). This field is locally in L2,1 (R3 ) for

almost all ω.

Proof: Let B ⊂ R3 be a ball centered at 0. To prove that ‖~fω(m)‖L2,1(B) is

ω-a.s. finite, it is enough to check that it belongs to L2,∞ (Ω). Replacing theL2,1 (B)-Lorentz norm by its expression (3), we have

‖‖~fω(m)‖L2,1(B)‖L2,∞(Ω) =

∥

∥

∥

∥

∫ ∞

0

√

λ(m ∈ B; ‖~fω(m)‖ > t)dt

∥

∥

∥

∥L2,∞(Ω)

.

According to the triangular inequality generalized with integrals, an upper

bound is obtained by commuting the above Lorentz norm and the integral.

From the standard equality ‖
√
h‖L2,∞(Ω) =

√

‖h‖L1,∞(Ω), we obtain

(21)

∫ ∞

0

√

‖λ(m ∈ B; ‖~fω(m)‖ > t)‖L1,∞(Ω)dt.

The random variable ω 7→ λ(. . .) under the above Lorentz norm can be rewritten

as ∫∫∫

m∈B

1‖~f‖>t(Tmω)dλ(m).

Moreover, according to the Markov inequality (4), its L1,∞ (Ω)-Lorentz norm is

bounded by its L1 (Ω)-Lebesgue norm, which is equal, by stationarity of T , to

λ(B) · µ(‖~f(ω)‖ > t).

Replacing in (21) leads to

‖‖~fω(m)‖L2,1(B)‖L2,∞(Ω) ≤
√

λ(B)‖~f(ω)‖L2,1(Ω),

which is finite. Thus for almost all ω, the norm ‖~fω(m)‖L2,1(B) is finite. Con-

sidering a countable covering of R3 with balls, we obtain that the set of ω’s for

which ~fω(m) is locally in L2,1 (R3 ) has full measure (we denote this set Ω2,1(~f)

in the sequel). This proves Lemma 8.

For ω ∈ Ω2,1(~f), let us define F̃i(~f)(ω, x, y) by

F̃i(~f)(ω, x, y) = Gi(~fω)(x, y).

For all x, y, we have clearly F̃i(~f)(ω, x, y) = Fi(~f)(x, y)(ω), where this equality

holds in L2,1 (Ω). According to (19), and setting F̃ =
∑3

i=1 F̃i, the functions

F̃(~f)(ω, x, y) and F(~f)(x, y)(ω) coincide in L2,1 (Ω) for all x, y.
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Lastly, by continuity of F̃(~f)(ω, x, y) (see Lemma 7), the cocycle equation,

satisfied by F̃(~f)(ω, x, y) a priori for all x, y, z, for almost all ω, is in fact satisfied,

for almost all ω, and all x, y, z. This proves that F̃(~f)(ω, x, y) is a “true”

algebraic cocycle of degree 2, and completes the proof of Proposition 2.

3.2.2 Weak maximal inequality. A standard way to prove the pointwise er-

godic theorem would be to use the convergence for weak functional cobound-

aries and a maximal inequality. This maximal inequality implies that the set of

weakly divergence-free fields ~f(ω), which verify pointwise convergence, is closed

in L2,1 (Ω). In fact, the convergence for weak functional coboundaries is not so

easy to obtain, and we will not use this technique. But the maximal inequality

is interesting in itself. That is the reason why we prove it now.

The proof of our weak maximal inequality uses Lemma 7, and the standard

weak maximal inequality, which was pointed out in Introduction. We set

M̃(~f)(ω, x, y) =
1

1
2‖x ∧ y‖

F̃(~f)(ω, x, y)

and M̃∗
θ(
~f)(ω) = sup(x,y)∈Tθ

|M̃(~f)(ω, x, y)|, where Tθ is the set of the (x, y)

such that the three angles of the triangle ∆(0, x, y) are ≥ θ.

Proposition 3 (Weak maximal inequality): Let θ be in ]0, π/2[. There exists

a constant cθ such that for any weakly divergence-free field in the weak sense
~f(ω) in L2,1 (Ω) we have

‖M̃∗
θ(
~f)‖2,∞ ≤ cθ‖~f‖2,1.

Proof: By definition of F̃ , the average M̃(~f)(ω, x, y) is written as

M̃(~f)(ω, x, y) =
1

1
2‖x ∧ y‖G(~fω)(x, y).

In the integral (20) defining G1, we make the change of variables r = Rr′,

s = Rs′, η′ = η. We make a similar change of variables in the integrals defining

Gi, i = 2, 3, and obtain

R2

1
2‖x ∧ y‖G(~fR,ω)

( x

R
,
y

R

)

,

where ~fR,ω(m) is defined by ~fR,ω(m) = ~fω(Rm). If we take R = R(x, y) =

max(‖x‖, ‖x + y‖), and if we consider the upper bound on the (x, y) ∈ Tθ, it

follows that

M̃∗
θ(
~f)(ω) ≤ sup

(x,y)∈Tθ

R(x, y)2

1
2‖x ∧ y‖

· sup
(x,y)∈Tθ

∣

∣

∣
G(~fR(x,y),ω)

( x

R(x, y)
,

y

R(x, y)

)∣

∣

∣
.
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Let κθ be the left-hand-side factor of the above product. The condition on the

angles guarantees that the area 1
2‖x ∧ y‖ of the triangle ∆(0, x, y) is of order

R(x, y)2. The constant κθ is thus finite. Let us consider the right-hand-side

factor. Setting x′ = x/R(x, y), y′ = y/R(x, y) and R = R(x, y), it is bounded

by

sup
R

sup
x′,x′+y′∈B

G(~fR,ω)(x′, y′),

where B is the ball of radius ρ = 1 and center 0. By Lemma 7, it follows that

M̃∗
θ(
~f)(ω) ≤ κθ · 24

√

2

π
sup
R

‖~fR,ω‖L2,1(B).

Replacing the Lorentz norm ‖ · ‖L2,1(B) by its expression (3), we obtain

M̃∗
θ(
~f)(ω) ≤ κθ24

√

2

π
sup
R

∫ ∞

0

√

λ{‖m‖ < 1, |~fω(Rm)‖ > s}ds.

Commuting the supremum and the integral, and then using the triangular in-

equality generalized with integrals, it readily follows that

(22) ‖M̃∗
θ(
~f)‖2,∞ ≤ κθ24

√

2

π

∫ ∞

0

∥

∥

∥

√

sup
R
λ{‖m‖ < 1, ‖~fω(Rm)‖ > s}

∥

∥

∥

2,∞
ds.

According to the standard equality ‖
√
h‖2,∞ =

√

‖h‖1,∞, the above upper

bound becomes

κθ24

√

2

π

∫ ∞

0

√

‖ sup
R
λ{‖m‖ < 1, ~fω(Rm)‖ > s}‖1,∞ds.

Replacing λ{A} by
∫∫∫

m
1A(m) dλ(m) in the above supremum on R, this last

becomes the classical maximal function of the function 1(‖~f‖>s)(ω):

(1‖~f‖>s)
∗(ω) = sup

R

1

R3

∫∫∫

‖m‖<R

1(‖~f‖>s)(Tmω)dλ(m).

By the standard ergodic weak maximal inequality (5), we have the following

inequality:

‖(1‖~f‖>s)
∗(ω)‖1,∞ ≤ Cµ(‖~f(ω)‖ > s).

Replacing in (22), this leads to

‖M̃∗
θ(
~f)‖2,∞ ≤ κθ24

√

2

π

√
C

∫ ∞

0

√

µ(‖~f(ω)‖ > s)ds,

which proves Proposition 3 with cθ = κθ24
√

2/π
√
C.
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3.2.3 Proof of the pointwise ergodic theorem. A refinement of the weak maximal

inequality allows one to avoid the step of the proof of pointwise convergence for

a dense family in L2,1 (Ω):

Proposition 4: Let ~f(ω) be a vector field in L2,1 (Ω), weakly divergence-free.

Then for almost all ω, the family of functions defined by

F̃R(~f)(ω, x, y) =
1

R2
F̃(~f)(ω,Rx,Ry)

is equicontinuous on the set {(x, y), ‖x‖, ‖x+ y‖ ≤ 1}.

Proof: For a given ω, let us calculate the modulus of continuity of the function

F̃R(~f)(ω, x, y) on the set {(x, y), ‖x‖ and ‖x+ y‖ ≤ 1}. Let x, x′, y, y′ be such

that the vertices x, x′, x + y, x′ + y′ are in the ball of radius 1. Let ∆ and

∆′ be the oriented triangular surfaces respectively with 0, Rx, R(x + y) and

0, Rx′, R(x′ + y′) as vertices. The oriented path ∂∆ − ∂∆′ is the boundary

of an oriented surface constituted by 4 triangles (drawn between ∆ and ∆′ on

Figure 1). The cocycle equation, and shifts of the vertices of triangles give (let

us recall that the variables of F(~f) are the edges of the triangles and not the

vertices)

�
�

�
�

�
�

�
�

�
�

@
@

@
@

@
@

@
@

@
@

�
�
�
�
�
�
�

A
A

A
A

A
A
A

�������

HHHHHHH

��������������

O

Rx R(x+y)

Rx′

R(x′+y′)

Figure 1. Triangles decomposition.

F̃(~f)(ω,Rx,Ry) − F̃(~f)(ω,Rx′, Ry′) =

+ F̃(~f)(ω,Rx,Rx′ −Rx)

− F̃(~f)(TR(x+y)ω,−Ry,R(x′ − x))

− F̃(~f)(TRx′ω,Ry′, R(x+ y − x′ − y′))

+ F̃(~f)(ω,R(y′ + x′), R(x+ y − x′ − y′)).

In the four terms of the above decomposition, the third variable tends to zero

when x, y tend respectively to x′, y′. Consequently, it is sufficient to bound
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1
R2 F̃(~f)(TRuω,Rv,Rw), independently in u, v in the ball of center 0 and radius

ρ = 2, and in R > 0, by a quantity c∗ω(‖w‖) decreasing to 0 when ‖w‖ decreases

to 0. We have by definition

F̃(~f)(TRuω,Rv,Rw) = G(~fTRuω)(Rv,Rw),

hence, by change of variables r = Rr′, s = Rs′, η′ = η in the integral (20)

defining G1 and similar change of variables in the integrals defining Gi, i = 2, 3,

we obtain
1

R2
F̃(~f)(TRuω,Rv,Rw) = G(τu ~fR,ω)(v, w),

where the function ~fR,ω(m) is defined by ~fR,ω(m) = ~fω(R · m), and τ is the

translation of functions of the variablem ∈ R3 , defined by (τu~φ)(m) = ~φ(u+m).

Therefore, by Lemma 7, for almost all ω, we have

(23)
1

R2
|F̃(~f)(TRuω,Rv,Rw)| ≤ 48√

π
· ‖~fR,ω(m)‖L2,1(K(u,v,w))

where K(u, v, w) is obtained by shift of vector u of K(0, v, w). However, by the

choice of u, v, w, the tetrahedron K(u, v, w) is in the ball B of center 0 and

radius 3. Hence we have

λ{m ∈ K(u, v, w), ‖~fR,ω(m)‖ > t} ≤
min[λ(K(u, v, w)), λ{‖m‖ ≤ 3, ‖~fR,ω(m)‖ > t}].

It follows that the right-hand side of Inequality (23) is bounded independently

in u, v,R by

c∗ω(‖w‖) =

48√
π
·
∫ ∞

0

min
[

sup
u,v

√

λ(K(u, v, w)),

√

sup
R
λ{‖m‖ ≤ 3, ‖~fR,ω(m)‖ > t}

]

dt.

Hence we need to study the convergence to 0 of the quantity c∗ω(‖w‖), for ‖w‖
decreasing to 0. Let us first consider the supremum on u, v. The tetrahedron

K(u, v, w) has edges v, w and altitude RI — the radius of the circle inscribed

in the triangle ∆(0, v, w). Hence its volume equals

λ(K(u, v, w)) =
1

6
‖v ∧ w‖RI .

Since ‖v‖ ≤ 2 and RI ≤ ‖w‖/2, it follows that

sup
u,v

λ(K(u, v, w)) ≤ 1

6
‖w‖2.
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This tends to 0 when ‖w‖ decreases to 0. Thus, according to the monotone con-

vergence theorem, the above convergence of c∗ω(‖w‖) will be true if the integral

i(ω) =

∫ ∞

0

√

sup
R
λ{‖m‖ ≤ 3, ‖~fω(R ·m)‖ > t}dt

is a.s.-ω finite. It thus suffices to check that i(ω) ∈ L2,∞ (Ω). According to the

triangular inequality generalized with integrals, we have

‖i(ω)‖2,∞ ≤
∫ ∞

0

∥

∥

∥

√

sup
R
λ{‖m‖ ≤ 3, ‖~fω(R ·m)‖ > t}

∥

∥

∥

2,∞
dt.

Up to a constant, the above upper bound is the one of the inequality (22). We

saw, in the proof of the weak maximal inequality, that this last is bounded

by the norm L2,1 (Ω) of ~f(ω), up to a multiplicative constant. This proves

that the function i(ω) is ω-a.s. finite, and completes the proof of the uniform

equicontinuity, with modulus of continuity

2(c∗ω(‖x− x′‖) + c∗ω(‖x+ y − x′ − y′‖)).

Remark: When the field ~f(ω) belongs to Lp (Ω) for a p > 2, we can prove that

for almost all ω, the functions F̃R(~f)(ω, x, y) are uniformly Hölder continuous

in x, y, with exponent 1 − 2/p, that is to say:

Proposition 5: Let ~f(ω) be a weakly divergence-free field in Lp (Ω) for some

p > 2. Then, for almost all ω, there is a constant k∗ω such that for all R, we

have

|F̃R(~f)(ω, x′, y′) − F̃R(~f)(ω, x, y)| ≤ k∗ω · (‖x− x′‖1−2/p + ‖y − y′‖1−2/p)

on the set {(x, y), ‖x‖ and ‖x+ y‖ ≤ 1}.

The proof is similar to that of the preceding proposition, but based on the

Hölder inequality.

Let us return to the case ~f(ω) in L2,1 (Ω). According to the Ascoli theorem,

the family of functions F̃R(~f)(ω, x, y) admits limit points for the topology of

the uniform continuity in the space of continuous functions, and it is enough

to prove uniqueness to have convergence. The identification of the limit value,

for each x, y, with rational coordinates, is easily done with the mean ergodic

theorem in L2,1 (Ω). This concludes the proof of the pointwise ergodic theorem

in the form stated in Theorem 2.
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4. About higher dimension and higher degree

The notions of “functional cocycle” and “functional coboundary” of degree k of

a stationary action of Rd , with k ≤ d, follow directly by analogy with differential

calculus (see [7]). The weak versions of these definitions follow, by a standard

method, from an integration by parts. Similarly, the notions of “algebraic cocy-

cle” and “pseudo-cocycle” of degree k follow by analogy with group theory (see

[4], [8], [9]). All previous statements of this paper can be generalized with these

cases.

For example, the connection between the functional and the algebraic notions

is the following. Let f = (fi1,...,ik
(ω))1≤i1<···<ik≤d be a “random differential

form” of degree k. Let x1, . . . , xk be points of Rd . Consider the k-dimensionalL1 (Ω)-valued integral defined by

F(f)(x1, . . . , xk)(ω) =
∑

(i1,...,ik)

1≤i1<···<ik≤d

∫

s1

. . .

∫

sk

(fi1,...,ik
(Ts1x1+···+skxk

ω)) det
i1,...,ik

(x1, . . . , xk)ds1 · · · dsk

where

• deti1,...,ik
(x1, . . . , xk) is the determinant of the k × k matrix obtained by

taking the lines i1, . . . , ik of the d×k matrix whose columns are x1, . . . , xk;

• the domain of integration is the simplex of points (s1, . . . , sk) such that

0 ≤ s1 ≤ · · · ≤ sk ≤ 1.

Then F(f)(x1, . . . , xk)(ω) is an algebraic pseudo-cocycle of degree k if and only

if the random differential form f(ω) is a weak functional cocycle of degree k.

As in the proof of Lemma 1, the argument is reduced to the Stokes formula.

Let us determine the integrability condition for the pointwise convergence.

We have to express the analogue of the right-hand-side integrals of the equality

(19). For instance, the first term is given by the formula

F1(f)(x1, . . . , xk)(ω) =

∫

η

F(f)(x1, . . . , xk + z(η))(ω)dη.

Because F(f) is a k-dimensional integral and because we need F1(f) to be

a d-dimensional integral, the integral on η has to be on a suitable subset of

a (d − k)-dimensional sub-space. Then, in the d-dimensional integral F1(f),

we make the change of variables (s1, . . . , sk, η) 7→ (s1, . . . , sk−1, r, η) where the

parameter r is the distance to the (k− 1)-dimensional sub-space containing the

points 0, x1, . . . , xk−1. Lebesgue measure of Rd has the same order as

ds1 · · · dsk−1dr · rd−kdη.
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We thus need to find the smallest locally Lorentz space containing 1/rd−k. An

elementary calculation shows that it is Lp,∞ (Rd ) with p = (d−k+1)/(d−k). The

dual exponent is p∗ = p/(p−1) = d−k+1. Hence the required integrability for

the pointwise convergence is Ld−k+1,1 (Ω). This generalizes the theorem stated

for k = 1 in [1].
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